Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 50: 109581, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767128

RESUMO

A hyperspectral field sensor (FloX) was installed in Adventdalen (Svalbard, Norway) in 2019 as part of the Svalbard Integrated Arctic Earth Observing System (SIOS) for monitoring vegetation phenology and Sun-Induced Chlorophyll Fluorescence (SIF) of high-Arctic tundra. This northernmost hyperspectral sensor is located within the footprint of a tower for long-term eddy covariance flux measurements and is an integral part of an automatic environmental monitoring system on Svalbard (AsMovEn), which is also a part of SIOS. One of the measurements that this hyperspectral instrument can capture is SIF, which serves as a proxy of gross primary production (GPP) and carbon flux rates. This paper presents an overview of the data collection and processing, and the 4-year (2019-2021) datasets in processed format are available at: https://thredds.met.no/thredds/catalog/arcticdata/infranor/NINA-FLOX/raw/catalog.html associated with https://doi.org/10.21343/ZDM7-JD72 under a CC-BY-4.0 license. Results obtained from the first three years in operation showed interannual variation in SIF and other spectral vegetation indices including MERIS Terrestrial Chlorophyll Index (MTCI), EVI and NDVI. Synergistic uses of the measurements from this northernmost hyperspectral FLoX sensor, in conjunction with other monitoring systems, will advance our understanding of how tundra vegetation responds to changing climate and the resulting implications on carbon and energy balance.

2.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303068

RESUMO

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Assuntos
Clima , Ecossistema , Humanos , Fenômenos Fisiológicos Vegetais , Software , Plantas
3.
Proc Natl Acad Sci U S A ; 119(38): e2118014119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095176

RESUMO

Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.


Assuntos
Butadienos , Aquecimento Global , Hemiterpenos , Desenvolvimento Vegetal , Tundra , Compostos Orgânicos Voláteis , Butadienos/análise , Hemiterpenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise
4.
Ambio ; 46(Suppl 1): 70-80, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116692

RESUMO

Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.


Assuntos
Metano/análise , Áreas Alagadas , Regiões Árticas , Ciclo do Carbono , Mudança Climática , Monitorização de Parâmetros Ecológicos/instrumentação , Monitorização de Parâmetros Ecológicos/métodos , Groenlândia , Estações do Ano , Neve , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...